Удельная прочность меди. Механические свойства металлов

  • 04.05.2024

Один из самых первых металлов, который стали применять в ковке. Еще в бронзовый век человек освоил искусство изготовления оружия и орудий труда из мягкой и пластичной меди, и до сих пор этот металл продолжает широко использоваться в художественной ковке.

Этому есть объяснение: медь проявляет низкую химическую активность при взаимодействии с другими химическими элементами. Это значит, что медь отлично подходит для создания металлических композиций, как экстерьерного, так и интерьерного назначения, ведь она демонстрирует высочайшую коррозионную устойчивость в условиях воздействия неблагоприятных факторов окружающей среды.

Конечно, не каждому понравится внешний вид защитного внешнего слоя медной поверхности, но зеленая патина отлично защищает медь от коррозии. Правда, патина, представляющая собой карбонат меди, наносит существенный вред здоровью человека, поэтому медные композиции нужно покрывать защитной краской, предупреждающей образование зеленой пленки.

Первоначально медное изделие имеет блестящий красно-золотистый цвет, потом приобретает коричневый и черный оттенки, а через 20 лет становится насыщенно зеленым. Патина может покрыть металлическую поверхность и раньше, особенно есть металл постоянно подвергается воздействию влаги.


Свойства меди
Ковкость и пластичность меди очень высоки - их нее можно выковать практически любую форму, даже геометрическую со сложными изгибами.

У меди хорошая теплопроводность, а ее физико-механические характеристики напрямую зависят от качества ее обработки. Из руды получают так называемую черновую медь, которая не годится для кузнечных целей. Сперва металл должен пройти стадию огневого рафинирования, в результате которого выжигается большее количество примесей (например, висмута и свинца). Чтобы полностью освободить медный сплав от включений, применяют электролитическое рафинирование. Вот из этой меди потом вытягивают проволоку, медные листы, слитки и т.д.

В художественной ковке редко применяется чистая медь - в нее добавляют лигатуру, которая в определенных концентрациях способна придавать сплаву те или иные физические свойства. Некоторые медные сплавы даже получили свое собственное название, например, латунь и бронза.

В большинстве случаев лигатура добавляется для того, чтобы придать мягкой и легко деформирующейся меди хоть немного твердости. Чистая медь плохо подходит для литья и ковки - появляются нелицеприятные пузыри.

После литья медное изделие часто гравируют, а также эмалируют выемочным и перегородочным способами.

Медь - металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.

Медь. Она имеет характерный красноватый цвет, в природе встречается в виде сернистых соединений, в окислах и очень редко в чистом виде. Медь маркируют буквой М. В зависимости от чистоты меди (ГОСТ 859-2001). Самая чистая медь - содержит 99,99% меди и 0,01% примесей. Благодаря высокой пластичности медь хорошо обрабатывается давлением в холодном и горячем состоянии. Она обладает хорошей электропроводностью. Из нее изготовляют проводники электрического тока - провода и кабели.

Химические свойства меди

Медь - малоактивный металл, который не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако, медь растворяется в сильных окислителях (например, азотной и концентрированной серной).

Медь обладает достаточно высокой стойкостью к коррозии. Однако, во влажной атмосфере, содержащей углекислый газ, поверхность металла покрывается зеленоватым налетом (патиной).

Основные физические свойства меди

Механические свойства меди

При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации.

Применение меди

Такие свойства меди, как электропроводность и теплопроводность, обусло- вили основную область применения меди - электротехническая промыш- ленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование.

Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий и т. д. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами.

Очень важная область применения меди - производство сплавов. Один из самых полезных и наиболее употребляемых сплавов - латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет.

С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.

Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве.

Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.

    Алюминий, свойства, применение.

Алюминий. Алюминий - мягкий металл белого цвета. Он добывается путем электролиза из алюминиевой руды - бокситов и хорошо поддается прокатке и ковке. Особенностями алюминия являются легкость, хорошая электропроводность (60% электропроводности меди) и высокая коррозийная стойкость.

По ГОСТ 3549-55 алюминий выпускается нескольких марок. Самой высокой по чистоте является марка АВ0000, содержащая 99,996% алюминия. Из алюминия изготовляют провода, кабели, змеевики (испарители) в холодильниках и т. д. Окислы алюминия безвредны.

Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.

Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al, снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.

В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах

лектропроводность .

Важнейшее свойство алюминия – высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.

На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.

Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.

Величина удельного электрического сопротивления при температуре 20 С составляет Ом*мм 2 /м или мкОм*м:

0.0277 – отожженная проволока из алюминия марки А7Е

0.0280 – отожженная проволока из алюминия марки А5Е

0.0290 – после прессования, без термообработки из алюминия марки АД0

Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.

Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.

Теплопроводность

Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.

Другие физические свойства .

Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди – 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения – у меди и железа эта величина составляет примерно 41-49 кал/г.

Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэфициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%.

Коррозионные свойства алюминия.

Сам по себе алюминий является очень химически активным металлом. С этим связано его применение в алюмотермии и в производстве ВВ. Однако на воздухе алюминий покрывается тонкой (около микрона), пленкой окиси алюминия. Обладая высокой прочностью и химической инертностью, она защищает алюминий от дальнейшего окисления и определяет его высокие антикоррозионные свойства во многих средах.

ехнологические свойства .

Высокая пластичность алюминия позволяет производить фольгу (толщиной до 0.004 мм), изделия глубокой вытяжкой, использовать его для заклепок.

Алюминий технической чистоты при высоких температурах проявляет хрупкость.

Обрабатываемость резанием очень низкая.

Температура рекристаллизационного отжига 350-400 С, температура отпуска – 150 С.

Свариваемость.

Трудности сварки алюминия обусловлены 1) наличием прочной инертной окисной пленки, 2) высокой теплопроводности.

Тем не менее алюминий считается хорошо свариваемым металлом. Сварной шов имеет прочность основного металла (в отожженном состоянии) и такие же коррозионные свойства. Подробно о сварке алюминия см., например, www . weldingsite.com.ua .

Применение.

Из-за низкой прочности алюминий применяется только для ненагруженных элементов конструкций, когда важна высокая электро- или теплопроводность, коррозионная стойкость, пластичность или свариваемость. Соединение деталей осуществляется сваркой или заклепками. Технический алюминий применяется как для литья, так и для производства проката.

    Сплавы на основе меди, марки, применение.

В настоящее время считается, что бронзовому веку предшествовал период, когда оружие и инструменты человек делал из меди. В то же время из употребления не исчезли еще кремниевые орудия, поэтому его называют каменно-медным веком.

Трудно установить точно, когда именно люди начали добывать и обрабатывать металлы. Можно лишь предположить, какие из металлов первыми нашли применение. Очевидно, это были металлы, которые в природе встречаются в виде самородков. К таким наиболее распространенным металлам относятся медь и золото. Скорее всего, золото и было первым металлом, который люди начали использовать. Однако из-за низких механических свойств изготовлять орудия труда или оружие было нецелесообразно. Поэтому, очевидно, первые мелкие изделия, такие как наконечники для стрел и копий, выковывали из найденных самородков меди. Было обнаружено, что при холодной ковке медь не только принимает нужную форму, но и становится тверже. Затем люди открыли, что упрочненный ковкой металл можно снова сделать мягким, нагрев его на огне. В дальнейшем люди научились плавить медь и отливать ее в определенные формы.

Однако медь при всех своих достоинствах имела существенный недостаток – медные орудия труда и инструменты быстро затуплялись. Даже в холодноупрочненном состоянии свойства меди были не настолько высоки, чтобы заменить изделия из камня.

Решающую роль в этом направлении сыграли сплавы меди с другими элементами (бронзы). Основными преимуществами сплавов по сравнению с медью были их лучшие литейные свойства, значительно более высокие твердость и прочность, более сильное упрочнение при холодной деформации.

Наиболее распространенными леги­ру­ющими элементами в меди являются цинк, алюминий, олово, железо, кремний, мар­га­нец, бериллий, никель, которые существен­но повышают ее прочностные свойства. На рис. 66 показано влияние некоторых ле­гирующих элементов на предел прочности меди s в, МПа. Легирующие элементы, по­вы­шая прочность, практически не снижают, а некоторые из них (алюминий, цинк, олово) даже повышают пластичность.

Медные сплавы, как и сплавы на основе алюминия, подразделяются на де­фор­ми­ру­емые и литейные, термически неупрочняемые. Однако наиболее часто медные спла­вы делят на латуни и бронзы (рис. 67).

Латунями называются сплавы на основе меди, в которых главным легирующим элементом является цинк. Бронзы – все сплавы меди (кроме латуней) с легирующими элементами.

Обозначение медных сплавов. Медные сплавы маркируются по химическому составу. Для этого используются буквы (табл. 12), обозначающие легирующие элементы и числа, показывающие количество элементов в массовых процентах (мас. %).

Медь - это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании « ».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой - бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток , протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) - верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды - это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди - это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Технически чистая медь в практике получила название красной меди из-за ее характерного красного цвета.

Характеристики меди:

Удельный вес..........................................8,93

Температура плавления..................................1083° С

кипения....................................2310° С

Коэффициент линейного расширения на 1°С......16,8х10 -6

Объемная усадка..............................4,2%

Чистая медь обладает высокой электро- и теплопроводностью, пластичностью и стойкостью против атмосферной коррозии. Электропроводность меди выше в 5,7 раза по сравнению с электропроводностью железа. Высокая электропроводность меди обусловила ее широкое применение в электропромышленности. Теплопроводность меди в сравнении с другими промышленными металлами значительно выше (например, в 6,3 раза больше чем у железа). Благодаря высокой пластичности, медь без каких-либо технологических трудностей хорошо прокатывается в холодном состоянии в тончайшие листы.

Механические свойства отожженной меди:

Предел прочности σ B ..............не ниже 20 кг/мм 2

Относительное удлинение δ ......................до 50%

Твердость по Бринеллю Н B ...........порядка 35 кг /мм 2

Пределы прочности и твердость меди путем наклепа могут быть увеличены соответственно σ B до 40-50 кг/мм 2 и Н B до 100-220 кг/мм 2 , пластические свойства при этом будут значительно снижены.

С понижением температуры вплоть до -253° С механические свойства меди не снижаются, предел прочности и удлинение, наоборот, повышаются. Это обстоятельство позволяет широко использовать медь при изготовлении конструкций, работающих при низкой температуре. При повышении температуры предел прочности меди значительно снижается. Пластические свойства нагреваемой меди до температуры 500-600° С падают, с повышением температуры возрастают, достигая наибольшей величины при температуре около 800° С. Поэтому горячая обработка меди обычно производится при температуре не ниже 600-700° С.

Свойства меди во многом зависят от условий механической и термической обработки, а также от содержания в ней примесей. В меди могут находиться такие примеси, как кислород (O 2), висмут (Bi), свинец (Рb), сера (S), фосфор (Р), сурьма (Sb), мышьяк (As). Вредными примесями, снижающими прочность и технологические свойства, являются висмут, свинец, сера и кислород, поэтому содержание их в меди должно быть минимальным.

Наиболее опасными и вредными примесями являются висмут и свинец. Они не растворимы в меди и образуют хрупкие и легкоплавкие оболочки вокруг зерен. Поэтому содержание их в хороших сортах меди ограничивается: висмута допускается не более 0,002%, а свинца до 0,005%. Содержание других примесей, как менее вредно влияющих на механические свойства, допускается до десятых долей процента.

Техническая и электролитическая медь, обычно применяемая в производстве, имеет в своем составе кислород, содержание которого допускается до 0,1%. Кислород в меди находится в виде включений закиси меди (Cu 2 O). При малом содержании кислорода - до 0,07% - образовавшаяся закись меди способствует измельчению зерна, не вызывает снижения прочности и пластичности и не ухудшает холодную обработку. В прокатной отожженной меди закись меди имеет форму обособленных округлых включений. Подобное расположение закиси меди является наиболее благоприятным, так как в таком виде она почти не оказывает влияния на механические свойства. При нагреве меди с содержанием кислорода более 0,01 % до температуры выше 750° С появляются трещины. Следует отметить, что это явление наблюдается только в том случае, когда нагрев ведется в восстановительной атмосфере, созданной водородом (Н 2), окисью углерода (СО), метаном (СН 4) и другими восстановительными газами.

Водород и окись углерода при высокой температуре легко проникают внутрь твердой меди и при наличии в ней закиси меди (Cu 2 O) восстанавливают ее, образуя одновременно пары воды (Н 2 O) или углекислый газ (СO 2).

Реакция восстановления меди идет по формулам:

Cu 2 O + H 2 = 2Cu + H 2 O

Cu 2 O + СО = 2Cu + СO 2 .

Образовавшийся водяной пар или углекислый газ нерастворимы в меди и не могут свободно выделяться.

Находясь под большим давлением вследствие высокой температуры, пары воды или углекислый газ разрывают металл по границам зерен, образуя крупные и мелкие межкристаллические трещины. Это явление носит название «водородной болезни».

Медь в жидком состоянии легко поглощает газы и окисляется, что ограничивает ее применение для литых изделий, так как растворенные газы при застывании неполностью выделяются и создают пористость. Промышленность поставляет главным образом прокатанную или волоченую медь в виде проволоки, полос, ленты, листов и труб, а также электролитическую и чушковую медь, идущую для приготовления сплавов. Обычно для изготовления различных медных деталей и конструкций применяется медь марок М0, M1, М2, МЗ и МЗС; содержание кислорода в м.арках М2 и МЗ допускается до 0,1%.

Производство меди с небольшим содержанием кислорода, так называемой «бескислородной меди», вызывает ряд технологических трудностей.

Состав и назначение различных марок технической меди, применяемых в промышленности, регламентируется ГОСТ 859-41, который предусматривает шесть марок.

4. Влияние примесей и структуры меди на ее пластичность

Наличие в бескислородной меди примесей в количествах, регламентируемых ГОСТ 859-78, не оказывает заметного влияния на ее механические свойства при 20°С. Однако при высокотемпературных испытаниях и определенны условиях наблюдается несколько интервалов снижения пластичности, которые у спектрально чистой меди отсутствуют. Существует ряд гипотез, объясняющих причину снижения пластичности меди в определенном температурном интервале и при статических скоростях испытания образцов. Эти гипотезы условно можно разделить на две группы:

а) гипотезы, связывающие аномальное понижение пластичности с взаимодействием меда с селеном, теллуром, висмутом, свинцом, серой, кислородом, водородом;

б) гипотезы, объясняющие падение пластичности в определенных температурных интервалах структурными изменениями меди.

Гипотезы первой группы основаны на термодинамических расчетах, проверенных в работе . Расчеты показали, что интервал пониженной пластичности меда совпадает с температурой, при которой селен и теллур могут находиться между медными кристаллами в газообразном состоянии. Теллур и селен находятся в меди в тысячных и десятитысячных долях процента, однако тонкие прослойки газовой фазы этих элементов можно рассматривать как готовые трещины критического размера, которые под действием растягивающих усилий при испытаниях развиваются в микротрещины и вызывают хрупкость меди.

Свинец и висмут незначительно растворимы в твердой меди (0,001 %) и поэтому находятся в виде включений элементарного свинца или висмута. С повышением температуры эти элементы переходят в жидкое состояние и, располагаясь по границам зерен, нарушают связь между ними.

При температурах порядка 800°С происходит растворение малых количеств этих элементов в меди до исчезновения жидкой фазы и ликвидируется зона снижения пластичности. Однако в случае селена и теллура повышение пластичности при высоких температурах растворением этих элементов в меди объяснить нельзя.

Слитки из бескислородной меди, содержащие 2 · 10-3 % S, растрескиваются по кромкам при горячей прокатке, а менее 1 · 10-3 % S не имеют трещин. Окончание прокатки слитков проходит, как правило в районе, падений пластичности (500-700°С), что объясняет образование микротрещин уже на этой стадии. Висмут даже при содержании 3,8 - 10 -4 % понижает пластичность меди, а при 2,5 -10 -4 % на границах зерен найдены сегрегации, содержащие до 17 % Bi; тоже замечено и в случае с серой . Являясь поверхностно-активными элементами по отношению к меди, эти примеси уменьшают ее поверхностную энергию, что приводит к снижению межзеренного сцепления, а следовательно, к потере пластичности. Если поверхностная энергия чистой меди составляет около 0,135 мДж, то присутствие серы снижает ее до 7 мкДж и тем самым снижает когезивную прочность границ зерен. Существенную роль в возникновении красноломкости бескислородной меди играет отношение между содержанием примесей и их растворимостью в твердой меди. Чем выше это отношение (которое наиболее велико в основном для кислорода, висмута, серы, свинца), тем больше тенденция к образованию включений, которые, сегрегируя по границам зерен и коагулируя при высокотемпературной обработке, образуют дефекты.

В случае деформированной меди присутствие небольших количеств кислорода способствует повышению равномерного и уменьшению локального сужения шейки медной проволоки до 55 -65 % (в зависимости от степени деформации и содержания кислорода). В то же время проявление очень низкой пластичности кислородсодержащей меди при комнатной температуре и высокотемпературных испытаниях (ψ= = 20 %) дало возможность предположить }